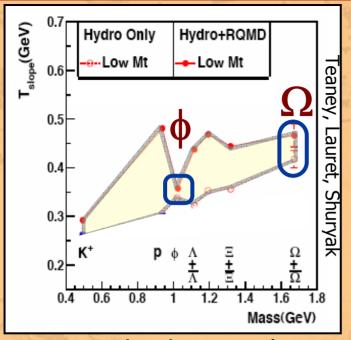
Current research and future plans

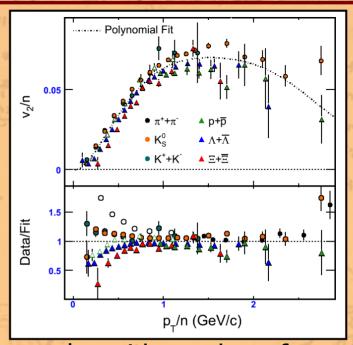
S&T Review: break-out session

Quark and gluon degrees of freedom

- low x-section ϕ and Ω v_2
 - → reduced dependence on hadronic stage
- constituent quark systematics


□Elliptic flow fluctuations

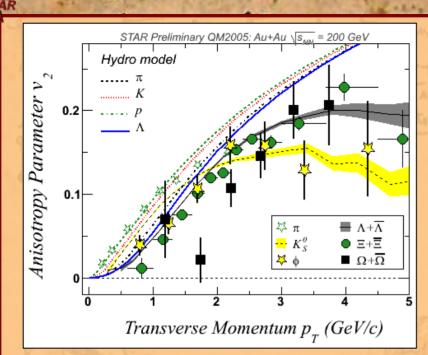
- constrain the initial conditions
 - → CGC or Glauber initialization of hydro
- reduce (v₂) uncertainties


Disappearance of quark and gluon dof and/or critical point discovery

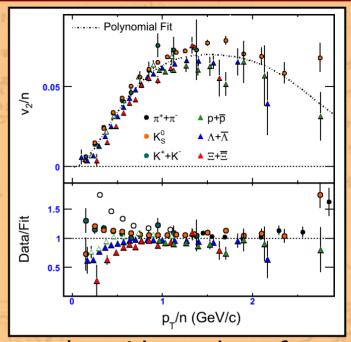
• high μ_B low $\sqrt{s_{NN}}$ RHIC scan

 ϕ and Ω have real sensitivity to the EOS

v₂ scales with number of const. quarks: reveals sub-hadronic d.o.f.


sensitivity to the QGP EOS & distinguish btw hadronic & partonic effects

Data at RCF and PDSF reduced to picoDSTs → institutes store and analyze data locally

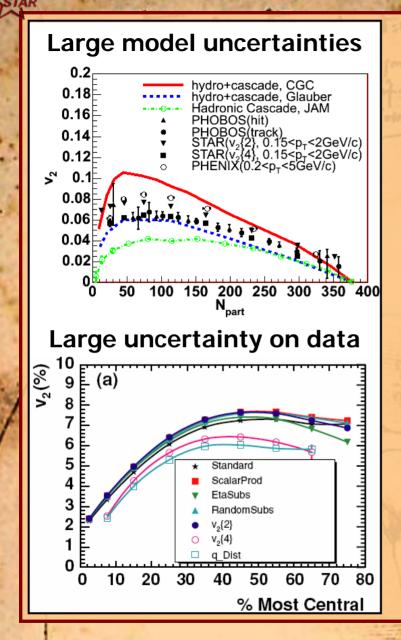

Institutes involved (so far): LBL, BNL, UCLA, IOPP, USTC, SINAP, U. of Capetown

Analysis topics: high p_T π & p v_2 , π -k-p v_2 (ToF), K_S & Λ v_2 , ϕ & K* v_2 , p.i.d. correl., ϕ & K* spin align., ron-photonic electron v_2 , f^0 (980) centrality dependence

why identified particle

 ϕ and Ω have real sensitivity to the EOS

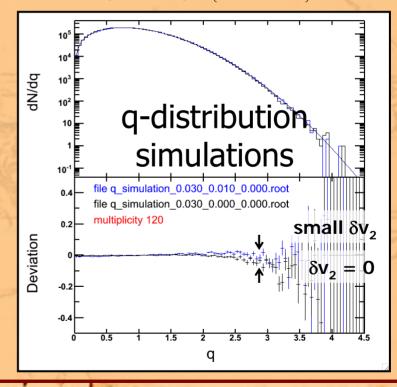
v₂ scales with number of const. quarks: reveals sub-hadronic d.o.f.


sensitivity to the QGP EOS & distinguish btw hadronic & partonic effects

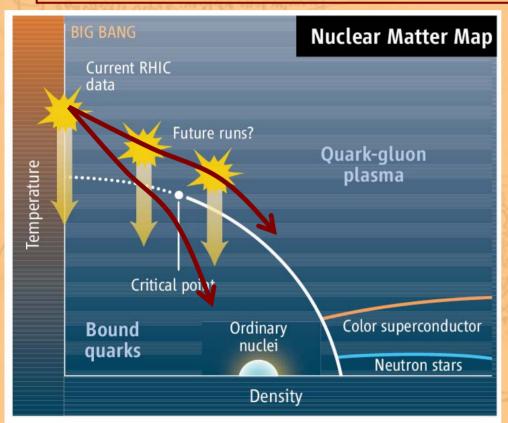
Data at RCF and PDSF reduced to picoDSTs → institutes store and analyze data locally

Institutes involved (so far): LBL, BNL, UCLA, IOPP, USTC, SINAP, U. of Capetown

Analysis topics: high p_T π & p v_2 , π -k-p v_2 (ToF), K_S & Λ v_2 , ϕ & K* v_2 , p.i.d. correl., ϕ & K* spin align., ron-photonic electron v_2 , f^0 (980) centrality dependence


why identified particle

measuring v₂ fluctuations removes both uncertainties


q-distributions (simultaneous fit) $v_2{4}/v_2{6}$ (remove non-flow) ZDC-SMD (spectator reaction-plane)

$$\frac{1}{q}\frac{dN}{dq} \propto \frac{1}{\sqrt{2\pi}\delta v \sigma_g^2} \int dv \exp\left\{-\frac{1}{2}\left(\frac{v - \langle v \rangle}{\delta v}\right)^2\right\} \exp\left\{-\frac{1}{2}\left(\frac{v\sqrt{M} - q}{\sigma_g}\right)^2\right\} \exp\left\{-\frac{v\sqrt{M}q}{\sigma_g^2}\right] I_0\left(\frac{v\sqrt{M}q}{\sigma_g^2}\right) I_0\left(\frac$$

constraining initial conditions

Disappearance of partonic effects or detection of critical point

Landmark study. Physicists have seen a smooth transition from bound quarks to quark-gluon plasma (dotted line). They now hope to find the point beyond which the transition becomes violent (white line).

Disappearance of partonic effects identified particle v₂ disappearance of ncq-scaling and multi-strange hadron v₂

Critical point discovery detect enhanced fluctuations and signatures of a first order phase transition

Understanding the matter created at RHIC

Quark and gluon degrees of freedom

identified particle v₂, spectra, and correlations

Constraining the initial conditions

elliptic flow fluctuations

Disappearance of quark and gluon dof and/or critical point discovery

• high μ_B low $\sqrt{s_{NN}}$ RHIC scan

